Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
2.
Br J Haematol ; 204(4): 1383-1392, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38442908

ABSTRACT

Warts, hypogammaglobulinaemia, infections and myelokathexis syndrome (WHIMS) is a rare combined primary immunodeficiency caused by the gain of function of the CXCR4 chemokine receptor. We present the prevalence of cancer in WHIMS patients based on data from the French Severe Chronic Neutropenia Registry and an exhaustive literature review. The median follow-up of the 14 WHIMS 'patients was 28.5 years. A central review and viral evaluation of pathological samples were organized, and we conducted a thorough literature review to identify all reports of WHIMS cases. Six French patients were diagnosed with cancer at a median age of 37.6 years. The 40-year risk of malignancy was 39% (95% confidence interval [CI]: 6%-74%). We observed two human papillomavirus (HPV)-induced vulvar carcinomas, three lymphomas (two Epstein-Barr virus [EBV]-related) and one basal cell carcinoma. Among the 155 WHIMS cases from the literature, 22 cancers were reported in 16 patients, with an overall cancer 40-year risk of 23% (95% CI: 13%-39%). Malignancies included EBV-associated lymphoproliferative disorders and HPV-positive genital and anal cancers as in the French cohort. Worldwide, nine cases of malignancy were associated with HPV and four with EBV. Immunocompromised WHIMS patients appear to be particularly susceptible to developing early malignancy, mainly HPV-induced carcinomas, followed by EBV-related lymphomas.


Subject(s)
Agammaglobulinemia , Carcinoma , Epstein-Barr Virus Infections , Lymphoma , Papillomavirus Infections , Primary Immunodeficiency Diseases , Warts , Humans , Adult , Papillomavirus Infections/complications , Papillomavirus Infections/epidemiology , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/epidemiology , Herpesvirus 4, Human , Warts/complications , Warts/epidemiology , Warts/diagnosis , Syndrome , Receptors, CXCR4
3.
Hum Mol Genet ; 33(10): 894-904, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38433330

ABSTRACT

Hepatocyte nuclear factor-4 alpha (HNF-4A) regulates genes with roles in glucose metabolism and ß-cell development. Although pathogenic HNF4A variants are commonly associated with maturity-onset diabetes of the young (MODY1; HNF4A-MODY), rare phenotypes also include hyperinsulinemic hypoglycemia, renal Fanconi syndrome and liver disease. While the association of rare functionally damaging HNF1A variants with HNF1A-MODY and type 2 diabetes is well established owing to robust functional assays, the impact of HNF4A variants on HNF-4A transactivation in tissues including the liver and kidney is less known, due to lack of similar assays. Our aim was to investigate the functional effects of seven HNF4A variants, located in the HNF-4A DNA binding domain and associated with different clinical phenotypes, by various functional assays and cell lines (transactivation, DNA binding, protein expression, nuclear localization) and in silico protein structure analyses. Variants R85W, S87N and R89W demonstrated reduced DNA binding to the consensus HNF-4A binding elements in the HNF1A promoter (35, 13 and 9%, respectively) and the G6PC promoter (R85W ~10%). While reduced transactivation on the G6PC promoter in HepG2 cells was shown for S87N (33%), R89W (65%) and R136W (35%), increased transactivation by R85W and R85Q was confirmed using several combinations of target promoters and cell lines. R89W showed reduced nuclear levels. In silico analyses supported variant induced structural impact. Our study indicates that cell line specific functional investigations are important to better understand HNF4A-MODY genotype-phenotype correlations, as our data supports ACMG/AMP interpretations of loss-of-function variants and propose assay-specific HNF4A control variants for future functional investigations.


Subject(s)
Diabetes Mellitus, Type 2 , Hepatocyte Nuclear Factor 4 , Promoter Regions, Genetic , Transcriptional Activation , Hepatocyte Nuclear Factor 4/genetics , Hepatocyte Nuclear Factor 4/metabolism , Humans , Transcriptional Activation/genetics , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Hep G2 Cells , Genetic Variation , Hepatocyte Nuclear Factor 1-alpha/genetics , Hepatocyte Nuclear Factor 1-alpha/metabolism , Cell Line
4.
Haematologica ; 108(6): 1515-1529, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36727400

ABSTRACT

Germline GATA2 mutations predispose to myeloid malignancies resulting from the progressive acquisition of additional somatic mutations. Here we describe clinical and biological features of 78 GATA2-deficient patients. Hematopoietic stem and progenitor cell phenotypic characterization revealed an exhaustion of myeloid progenitors. Somatic mutations in STAG2, ASXL1 and SETBP1 genes along with cytogenetic abnormalities (monosomy 7, trisomy 8, der(1;7)) occurred frequently in patients with GATA2 germline mutations. Patients were classified into three hematopoietic spectra based on bone marrow cytomorphology. No somatic additional mutations were detected in patients with normal bone marrow (spectrum 0), whereas clonal hematopoiesis mediated by STAG2 mutations was frequent in those with a hypocellular and/or myelodysplastic bone marrow without excess blasts (spectrum 1). Finally, SETBP1, RAS pathway and RUNX1 mutations were predominantly associated with leukemic transformation stage (spectrum 2), highlighting their implications in the transformation process. Specific somatic alterations, potentially providing distinct selective advantages to affected cells, are therefore associated with the clinical/hematological evolution of GATA2 syndrome. Our study not only suggests that somatic genetic profiling will help clinicians in their management of patients, but will also clarify the mechanism of leukemogenesis in the context of germline GATA2 mutations.


Subject(s)
GATA2 Deficiency , Myeloproliferative Disorders , Humans , GATA2 Deficiency/diagnosis , GATA2 Deficiency/genetics , Myeloproliferative Disorders/genetics , Mutation , Bone Marrow , Germ-Line Mutation , GATA2 Transcription Factor/genetics
5.
Clin Endocrinol (Oxf) ; 98(3): 315-322, 2023 03.
Article in English | MEDLINE | ID: mdl-36325983

ABSTRACT

INTRODUCTION: Overall fertility and pregnancy outcomes in patients with nonclassic congenital adrenal hyperplasia (NCCAH) have been poorly studied. It has been suggested that hydrocortisone (HC) may decrease the time to conceive (TTC) and the rate of miscarriage in these patients. OBJECTIVES: To describe fertility and pregnancy outcomes in a large cohort of NCCAH women. The secondary objective was to identify factors that could impact reproductive outcomes, with a particular focus on HC dose and genetic status. DESIGN: Retrospective study in a referral center for congenital adrenal hyperplasia. PATIENTS AND MEASUREMENTS: One hundred seventy-three female patients with NCCAH confirmed by genetic testing, followed in our center between 2010 and 2019. RESULTS: Among the 173 patients, 95 women had a parental project, 86 of whom presented 176 pregnancies, 56% under glucocorticoid (GC) treatment and 44% without, and 76 women obtained 128 live births. Two-thirds of the patients regularized their cycle under GC treatment, with significant decrease of androgens and progesterone levels. This treatment was associated with a shortening of TTC (coef ß = -.196, information coefficient [IC] = [-10.7; -0.91], p = .021). Androgen levels and TTC were positively correlated to the rate of miscarriage (OR = 4.8, IC = [1.15; 20.34], p = .021 for testosterone, OR = 1.4, IC = [1.05; 1.81], p = .02 for androstenedione, and OR = 1.03, IC = [1.01; 1.06], p = .015 for TTC). There was no difference in terms of obstetric outcomes between patients with or without GC treatment. CYP21A2 genotype had no impact on pregnancy outcome or TTC. CONCLUSIONS: Infertility is relative in patients with NCCAH. HC seems beneficial for fertility and pregnancy outcomes, especially for patients with menstrual disorders and high preconceptional androgen levels.


Subject(s)
Abortion, Spontaneous , Adrenal Hyperplasia, Congenital , Humans , Female , Pregnancy , Adrenal Hyperplasia, Congenital/drug therapy , Adrenal Hyperplasia, Congenital/genetics , Pregnancy Outcome , Retrospective Studies , Androgens/therapeutic use , Fertility , Hydrocortisone/therapeutic use , Glucocorticoids/therapeutic use , Steroid 21-Hydroxylase/genetics
6.
Hematology Am Soc Hematol Educ Program ; 2022(1): 658-665, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36485107

ABSTRACT

Severe congenital neutropenias (SCNs) are rare diseases, and to date about 30 subtypes have been described according to their genetic causes. Standard care aims to prevent infections and limit the risk of leukemic transformation; however, several subtypes may have additional organ dysfunction(s), requiring specialized care. Granulocyte colony-stimulating factor and hematopoietic stem cell transplantation are now the bedrock of standard care. Better understanding of SCN mechanisms now offers the possibility of adapted therapy for some entities. An inhibitor of sodium glucose cotransporter, an antidiabetic drug, may attenuate glycogen storage disease type Ib and glucose-6-phosphatase catalytic subunit 3 neutropenias by clearing 1,5-anhydroglucitol, the precursor of the phosphate ester responsible for these SCNs. Chemokine receptor CXCR4 inhibitors contribute to reversing the leukocyte defect in warts, hypoglobulinemia, infections, and myelokathexis syndrome. All these new approaches use oral drugs, which notably improve quality of life. Additionally, improved research into clonal evolution has highlighted some ways to potentially prevent leukemia, such as stimulating somatic genetic rescue, a physiological process that might limit the risk of leukemic transformation.


Subject(s)
Glycogen Storage Disease Type I , Neutropenia , Humans , Quality of Life , Congenital Bone Marrow Failure Syndromes/genetics , Congenital Bone Marrow Failure Syndromes/therapy , Neutropenia/genetics , Neutropenia/therapy , Neutropenia/congenital , Glycogen Storage Disease Type I/drug therapy , Glycogen Storage Disease Type I/genetics , Granulocyte Colony-Stimulating Factor/therapeutic use
7.
Mol Med ; 28(1): 113, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36104811

ABSTRACT

BACKGROUND: HNF1A-MODY is a monogenic form of diabetes caused by variants in the HNF1A gene. Different HNF1A variants are associated with differences in age of disease onset, but other factors are postulated to influence this trait. Here, we searched for genetic variants influencing age of HNF1A-MODY onset. METHODS: Blood samples from 843 HNF1A-MODY patients from Czech Republic, France, Poland, Slovakia, the UK and the US were collected. A validation set consisted of 121 patients from the US. We conducted a genome-wide association study in 843 HNF1A-MODY patients. Samples were genotyped using Illumina Human Core arrays. The core analysis was performed using the GENESIS package in R statistical software. Kinship coefficients were estimated with the KING and PC-Relate algorithms. In the linear mixed model, we accounted for year of birth, sex, and location of the HNF1A causative variant. RESULTS: A suggestive association with age of disease onset was observed for rs2305198 (p = 2.09E-07) and rs7079157 (p = 3.96E-06) in the HK1 gene, rs2637248 in the LRMDA gene (p = 2.44E-05), and intergenic variant rs2825115 (p = 2.04E-05). Variant rs2637248 reached nominal significance (p = 0.019), while rs7079157 (p = 0.058) and rs2825115 (p = 0.068) showed suggestive association with age at diabetes onset in the validation set. CONCLUSIONS: rs2637248 in the LRMDA gene is associated with age at diabetes onset in HNF1A-MODY patients.


Subject(s)
Diabetes Mellitus, Type 2 , Genome-Wide Association Study , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/genetics , Hepatocyte Nuclear Factor 1-alpha/genetics , Humans , Phenotype
8.
Pediatr Blood Cancer ; 69(11): e29923, 2022 11.
Article in English | MEDLINE | ID: mdl-35969146

ABSTRACT

Neutropenia related to ELANE gene mutations predisposes patients to infection and leukemia/myelodysplasia, but little is known about the predisposition to cancer. Among a cohort of 147 patients, we identified four with malignant solid tumors (papillary thyroid cancer, anal squamous cell cancer, papillary renal cell carcinoma, and adrenocortical carcinoma), all aged 25-50 years. Three occurred with cyclic neutropenia, and one occurred with severe chronic neutropenia. Previous radiotherapy was identified as a risk factor in one patient. No genetic predisposition was identified in the three other patients.


Subject(s)
Neoplasms , Neutropenia , Humans , Leukocyte Elastase/genetics , Mutation , Neoplasms/complications , Neutropenia/genetics , Neutropenia/pathology , Registries
11.
Br J Haematol ; 198(1): 131-136, 2022 07.
Article in English | MEDLINE | ID: mdl-35355248

ABSTRACT

Myeloproliferative neoplasms (MPN) are mainly sporadic but inherited variants have been associated with higher risk development. Here, we identified an EPOR variant (EPORP488S ) in a large family diagnosed with JAK2V617F -positive polycythaemia vera (PV) or essential thrombocytosis (ET). We investigated its functional impact on JAK2V617F clonal amplification in patients and found that the variant allele fraction (VAF) was low in PV progenitors but increase strongly in mature cells. Moreover, we observed that EPORP488S alone induced a constitutive phosphorylation of STAT5 in cell lines or primary cells. Overall, this study points for searching inherited-risk alleles affecting the JAK2/STAT pathway in MPN.


Subject(s)
Myeloproliferative Disorders , Polycythemia Vera , Receptors, Erythropoietin , Thrombocythemia, Essential , Alleles , Gain of Function Mutation , Humans , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Mutation , Myeloproliferative Disorders/diagnosis , Myeloproliferative Disorders/genetics , Polycythemia Vera/genetics , Receptors, Erythropoietin/genetics , Thrombocythemia, Essential/genetics
12.
Leukemia ; 36(1): 126-137, 2022 01.
Article in English | MEDLINE | ID: mdl-34172895

ABSTRACT

The germline predisposition associated with the autosomal dominant inheritance of the 14q32 duplication implicating ATG2B/GSKIP genes is characterized by a wide clinical spectrum of myeloid neoplasms. We analyzed 12 asymptomatic carriers and 52 patients aged 18-74 years from six families, by targeted sequencing of 41 genes commonly mutated in myeloid malignancies. We found that 75% of healthy carriers displayed early clonal hematopoiesis mainly driven by TET2 mutations. Molecular landscapes of patients revealed two distinct routes of clonal expansion and leukemogenesis. The first route is characterized by the clonal dominance of myeloproliferative neoplasms (MPN)-driver events associated with TET2 mutations in half of cases and mutations affecting splicing and/or the RAS pathway in one-third of cases, leading to the early development of MPN, mostly essential thrombocythemia, with a high risk of transformation (50% after 10 years). The second route is distinguished by the absence of MPN-driver mutations and leads to AML without prior MPN. These patients mostly harbored a genomic landscape specific to acute myeloid leukemia secondary to myelodysplastic syndrome. An unexpected result was the total absence of DNMT3A mutations in this cohort. Our results suggest that the germline duplication constitutively mimics hematopoiesis aging by favoring TET2 clonal hematopoiesis.


Subject(s)
Autophagy-Related Proteins/genetics , Chromosomes, Human, Pair 14/genetics , Clonal Hematopoiesis , Gene Duplication , Leukemia, Myeloid, Acute/pathology , Myelodysplastic Syndromes/pathology , Myeloproliferative Disorders/pathology , Repressor Proteins/genetics , Vesicular Transport Proteins/genetics , Adolescent , Adult , Aged , Biomarkers, Tumor/genetics , Case-Control Studies , DNA Copy Number Variations , Disease Susceptibility , Female , Follow-Up Studies , Germ Cells , Humans , Leukemia, Myeloid, Acute/genetics , Male , Middle Aged , Mutation , Myelodysplastic Syndromes/genetics , Myeloproliferative Disorders/genetics , Prognosis , Retrospective Studies , Survival Rate , Young Adult
13.
Blood ; 139(5): 779-791, 2022 02 03.
Article in English | MEDLINE | ID: mdl-34115842

ABSTRACT

Severe congenital neutropenia is an inborn disorder of granulopoiesis. Approximately one third of cases do not have a known genetic cause. Exome sequencing of 104 persons with congenital neutropenia identified heterozygous missense variants of CLPB (caseinolytic peptidase B) in 5 severe congenital neutropenia cases, with 5 more cases identified through additional sequencing efforts or clinical sequencing. CLPB encodes an adenosine triphosphatase that is implicated in protein folding and mitochondrial function. Prior studies showed that biallelic mutations of CLPB are associated with a syndrome of 3-methylglutaconic aciduria, cataracts, neurologic disease, and variable neutropenia. However, 3-methylglutaconic aciduria was not observed and, other than neutropenia, these clinical features were uncommon in our series. Moreover, the CLPB variants are distinct, consisting of heterozygous variants that cluster near the adenosine triphosphate-binding pocket. Both genetic loss of CLPB and expression of CLPB variants result in impaired granulocytic differentiation of human hematopoietic progenitor cells and increased apoptosis. These CLPB variants associate with wild-type CLPB and inhibit its adenosine triphosphatase and disaggregase activity in a dominant-negative fashion. Finally, expression of CLPB variants is associated with impaired mitochondrial function but does not render cells more sensitive to endoplasmic reticulum stress. Together, these data show that heterozygous CLPB variants are a new and relatively common cause of congenital neutropenia and should be considered in the evaluation of patients with congenital neutropenia.


Subject(s)
Congenital Bone Marrow Failure Syndromes/genetics , Endopeptidase Clp/genetics , Neutropenia/congenital , Cells, Cultured , Endopeptidase Clp/chemistry , Exome , Female , Genetic Variation , Heterozygote , Humans , Infant , Male , Models, Molecular , Mutation , Neutropenia/genetics
14.
Diabetes ; 71(3): 578-584, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34556497

ABSTRACT

Gene panel sequencing (NGS) offers the possibility of analyzing rare forms of monogenic diabetes (MgD). To that end, 18 genes were analyzed in 1,676 patients referred for maturity-onset diabetes of the young genetic testing. Among the 307 patients with a molecular diagnosis of MgD, 55 (17.9%) had a mutation in a gene associated with a genetic syndrome. Of the patients with mutations, 8% (n = 25) carried the m.3243A>G variant associated with maternally inherited diabetes and deafness. At the time of referral very few had reported hearing loss or any other element of the typical syndromic presentation. Of the patients, 6% had mutation in HNF1B even though the typical extrapancreatic features were not known at the time of referral. Surprisingly, the third most prominent etiology in these rare forms was the WFS1 gene, accounting for 2.9% of the patients with pathogenic mutations (n = 9). None of them displayed a Wolfram syndrome presentation even though some features were reported in six of nine patients. To restrict the analysis of certain genes to patients with the respective specific phenotypes would be to miss those with partial presentations. These results therefore underlie the undisputable benefit of NGS strategies even though the situation implies cascade consequences both for the molecular biologist and for the clinician.


Subject(s)
Diabetes Mellitus/genetics , Genetic Predisposition to Disease/genetics , Genetic Testing/methods , Adolescent , Adult , DNA, Mitochondrial/genetics , Deafness/genetics , Diabetes Mellitus, Type 2/genetics , Ethnicity/genetics , Female , Hepatocyte Nuclear Factor 1-alpha/genetics , Hepatocyte Nuclear Factor 1-beta/genetics , Hepatocyte Nuclear Factor 4/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Membrane Proteins/genetics , Mitochondrial Diseases/genetics , Mutation , Phenotype , Syndrome , Wolfram Syndrome/genetics , Young Adult
16.
Expert Rev Hematol ; 14(10): 945-960, 2021 10.
Article in English | MEDLINE | ID: mdl-34486458

ABSTRACT

INTRODUCTION: Neutropenia is a relatively common finding in medical practice and the medical approach requires a gradual and pertinent diagnostic procedure as well as adapted management. AREAS COVERED: The area of chronic neutropenia remains fragmented between diverse diseases or situations. Here physicians involved in different aspects of chronic neutropenia gather both the data from medical literature till the end of May 2021 and their experience to offer a global approach for the diagnosis of chronic neutropenia as well as their medical care. EXPERT OPINION: In most cases, the neutropenia is transient, frequently related to a viral infection, and not harmful. However, neutropenia can be chronic (i.e. >3 months) and related to a number of etiologies, some clinically benign, such as so-called 'ethnic' neutropenia. Autoimmune neutropenia is the common form in young children, whereas idiopathic/immune neutropenia is a frequent etiology in young females. Inherited neutropenia (or congenital neutropenia) is exceptional, with approximately 30 new cases per 106 births and 30 known subtypes. Such patients have a high risk of invasive bacterial infections, and oral infections. Supportive therapy, which is primarily based on daily administration of an antibiotic prophylaxis and/or treatment with granulocyte-colony stimulating factor (G-CSF), contributes to avoiding recurrent infections.


Subject(s)
Bacterial Infections , Neutropenia , Antibiotic Prophylaxis/adverse effects , Child , Child, Preschool , Congenital Bone Marrow Failure Syndromes , Female , Granulocyte Colony-Stimulating Factor/therapeutic use , Humans , Neutropenia/diagnosis , Neutropenia/etiology , Neutropenia/therapy
17.
Br J Haematol ; 194(5): 908-920, 2021 09.
Article in English | MEDLINE | ID: mdl-34340247

ABSTRACT

Among 143 patients with elastase, neutrophil-expressed (ELANE)-related neutropenia enrolled in the French Severe Chronic Neutropenia Registry, 94 were classified as having severe chronic neutropenia (SCN) and 49 with cyclic neutropenia (CyN). Their infectious episodes were classified as severe, mild or oral, and analysed according to their natural occurrence without granulocyte-colony stimulating factor (G-CSF), on G-CSF, after myelodysplasia/acute leukaemia or after haematopoietic stem-cell transplantation. During the disease's natural history period (without G-CSF; 1913 person-years), 302, 957 and 754 severe, mild and oral infectious events, respectively, occurred. Among severe infections, cellulitis (48%) and pneumonia (38%) were the most common. Only 38% of episodes were microbiologically documented. The most frequent pathogens were Staphylococcus aureus (37·4%), Escherichia coli (20%) and Pseudomonas aeruginosa (16%), while fungal infections accounted for 1%. Profound neutropenia (<200/mm3 ), high lymphocyte count (>3000/mm3 ) and neutropenia subtype were associated with high risk of infection. Only the p.Gly214Arg variant (5% of the patients) was associated with infections but not the overall genotype. The first year of life was associated with the highest infection risk throughout life. G-CSF therapy achieved lower ratios of serious or oral infectious event numbers per period but was less protective for patients requiring >10 µg/kg/day. Infections had permanent consequences in 33% of patients, most frequently edentulism.


Subject(s)
Bacterial Infections/etiology , Leukocyte Elastase/analysis , Mycoses/etiology , Neutropenia/complications , Adolescent , Adult , Bacterial Infections/genetics , Child , Follow-Up Studies , France/epidemiology , Genetic Variation , Hematopoietic Stem Cell Transplantation , Humans , Infant , Leukocyte Elastase/genetics , Mycoses/genetics , Neutropenia/genetics , Neutropenia/therapy , Recurrence , Registries , Young Adult
18.
Nat Commun ; 12(1): 5044, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34413298

ABSTRACT

Indirect somatic genetic rescue (SGR) of a germline mutation is thought to be rare in inherited Mendelian disorders. Here, we establish that acquired mutations in the EIF6 gene are a frequent mechanism of SGR in Shwachman-Diamond syndrome (SDS), a leukemia predisposition disorder caused by a germline defect in ribosome assembly. Biallelic mutations in the SBDS or EFL1 genes in SDS impair release of the anti-association factor eIF6 from the 60S ribosomal subunit, a key step in the translational activation of ribosomes. Here, we identify diverse mosaic somatic genetic events (point mutations, interstitial deletion, reciprocal chromosomal translocation) in SDS hematopoietic cells that reduce eIF6 expression or disrupt its interaction with the 60S subunit, thereby conferring a selective advantage over non-modified cells. SDS-related somatic EIF6 missense mutations that reduce eIF6 dosage or eIF6 binding to the 60S subunit suppress the defects in ribosome assembly and protein synthesis across multiple SBDS-deficient species including yeast, Dictyostelium and Drosophila. Our data suggest that SGR is a universal phenomenon that may influence the clinical evolution of diverse Mendelian disorders and support eIF6 suppressor mimics as a therapeutic strategy in SDS.


Subject(s)
Mutation , Ribosome Subunits, Large, Eukaryotic/metabolism , Ribosomes/genetics , Ribosomes/pathology , Shwachman-Diamond Syndrome/genetics , Shwachman-Diamond Syndrome/pathology , Adolescent , Adult , Animals , Biological Phenomena , Cells, Cultured , Child , Child, Preschool , Dictyostelium , Drosophila , Eukaryotic Initiation Factors/genetics , Eukaryotic Initiation Factors/metabolism , Germ Cells , Humans , Infant , Molecular Dynamics Simulation , Peptide Elongation Factors/genetics , Peptide Elongation Factors/metabolism , Protein Binding , Protein Biosynthesis , Proteins/genetics , Proteins/metabolism , Ribonucleoprotein, U5 Small Nuclear/genetics , Ribonucleoprotein, U5 Small Nuclear/metabolism , Ribosomes/metabolism , Saccharomyces cerevisiae , Sequence Homology, Amino Acid , Shwachman-Diamond Syndrome/metabolism , Young Adult
19.
Pediatr Blood Cancer ; 68(7): e29071, 2021 07.
Article in English | MEDLINE | ID: mdl-33871916

ABSTRACT

Shwachman-Diamond syndrome with Shwachman-Bodian-Diamond syndrome (SBDS) biallelic variants is a rare disorder that predisposes the carrier to malignant hemopathies but solid-cancer predisposition is poorly known. Among 155 cases entered in the French Registry for Severe Chronic Neutropenia, three were identified with malignant solid tumors (ovary, breast, and esophagus). All cancers occurred during the fifth decade and, despite being localized at diagnosis, were rapidly fatal thereafter. No cancer was observed post transplantation in the 14 HSCT survivors. Based on the literature and our patient data, we can merely advance that this complication is predominantly diagnosed in adults.


Subject(s)
Neoplasms , Neutropenia , Shwachman-Diamond Syndrome , Female , Humans , Neoplasms/complications , Neoplasms/epidemiology , Neoplasms/genetics , Neutropenia/epidemiology , Neutropenia/etiology , Neutropenia/genetics , Registries , Shwachman-Diamond Syndrome/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...